
www.umbc.eduAll materials copyright UMBC unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 19 – Modules and
“Random” Numbers

www.umbc.edu

Last Class We Covered

• What makes “good code” good

– Commenting guidelines

• Top down design

• Code implementation

– Bottom up

– Top down

– Incremental development

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about Python’s Standard Library

• To understand modules and importing

– Syntax

– Purpose

• To learn about “random” numbers

– Pseudo randomness

4

www.umbc.edu

Python’s Standard Library

• The “standard library” is made up of two parts

• The “core” of the Python language

– Built-in types and data structures (int, list, etc.)

– Built-in functions (min(), max(), etc.)

• Optional modules the programmer can import

– Math things like fractions and random

– Useful pieces like datetime and calendar

5

www.umbc.edu6

Modules

www.umbc.edu

Modules

• A module is a Python file that contains
function definitions and other statements

– Named just like a regular Python file:

myModule.py

• Python provides many useful modules for us

• We can also create our own if we want

7

www.umbc.edu

Importing Modules

• To use a module, we must first import it

• Where does Python look for module files?

• In the current directory

• In a list of pre-defined directories

– These directories are where libraries like
random and calendar are stored

8

www.umbc.edu9

Importing

www.umbc.edu

Importing Modules

• To import modules, use this command:

import moduleName

• This imports the entire module of that name

– Every single thing in the file is now available

– This includes functions, data types, constants, etc.

10

www.umbc.edu

import

• To use the things we’ve imported this way, we
need to append the filename and a period to
the front of its name (“moduleName.”)

• To access a function called function:

moduleName.function()

11

www.umbc.edu

Calendar Module Example
import calendar

exCal = calendar.TextCalendar()

printCal = exCal.formatmonth(2016, 11)

print(printCal)

12

November 2016

Mo Tu We Th Fr Sa Su

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

www.umbc.edu13

“Random” Numbers

www.umbc.edu

Random Numbers

• Random numbers are useful for many things

– Like what?

– Cryptography

– Games of chance

– Procedural generation

• Minecraft levels, snowflakes in Frozen

• Random numbers generated by computers
can only be pseudo random

14

www.umbc.edu

Pseudo Randomness

• “Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.” – John von Neumann

• Pseudorandom appears to be random, but isn’t

– Mathematically generated, so it can’t be

– Called a Random Number Generator (RNG)

15

www.umbc.edu

Seeding for Randomness

• The RNG isn’t truly random

– The computer uses a “seed” in an
attempt to be as random as possible

• By default, the seed is the system time

– Changes every time the program is run

• We can set our own seed

– Use the random.seed() function

16

www.umbc.edu

Seeding for Randomness

• Same seed means same “random” numbers

– Good for testing, allow identical runs

random.seed(7)

random.seed("hello")

• 7 always gives .32, .15, .65, .07

• “hello” always gives .35, .66, .54, .13

17

www.umbc.edu

Seeding with User Input

• Can allow the user to choose the seed

– Gives user more control over how program runs

random.seed(userSeedChoice)

• Can also explicitly seed the system time

– Give the seed() function None or nothing

random.seed(None)

random.seed()

18

www.umbc.edu

Generating Random Integers

• random.randrange()

• Works the same as normal range()

– Start, stop, and step

>>> random.seed("dog")

>>> random.randrange(2, 21, 4) 14

>>> random.randrange(2, 21, 4) 6

>>> random.randrange(2, 21, 4) 10

>>> random.randrange(2, 21, 4) 10

>>> random.randrange(6) 5

>>> random.randrange(6) 4

19

www.umbc.edu

Generating Random Floats

• random.random()

• Returns a random float from 0.0 up to
(but not including) 1.0

>>> random.seed(201)

>>> random.random() 0.06710225875940379

>>> random.random() 0.3255995543326774

>>> random.random() 0.0036753697681032316

>>> random.random() 0.28279809896785435

20

www.umbc.edu

Generating Random Options

• random.choice()

• Takes in a list, returns one of the options at
random

>>> dogs = ["Yorkie", "Xolo", "Westie",

"Vizsla"]

>>> random.seed(11.2016)

>>> random.choice(dogs) 'Xolo'

>>> random.choice(dogs) 'Westie'

>>> random.choice(dogs) 'Vizsla'

>>> random.choice(dogs) 'Westie'

21

www.umbc.edu

How Seeds Work

• “Resets” the random number generator each
time it is seeded

• Should only seed once per program

• Seeding and calling gives the same number
>>> random.seed(3)

>>> random.random() 0.23796462709189137

>>> random.seed(3)

>>> random.random() 0.23796462709189137

22

www.umbc.edu

Time for

23

www.umbc.edu

Generating PINs

• Write a program that stores usernames
and their PINs in a dictionary

• Ask the user for their username

– If it exists, tell them their pin code

– If it doesn’t exist, create one using random

• Tell the user what their new temporary pin is

• Pin should be between 0000 and 9999

24

www.umbc.edu

Announcements

• Project 1 is due Wednesday

– It is much harder than the homeworks

– No collaboration allowed

– Start early

– Think before you code

– Come to office hours

25

